cotangent$17020$ - définition. Qu'est-ce que cotangent$17020$
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est cotangent$17020$ - définition

DUAL SPACE TO THE TANGENT SPACE IN DIFFERENTIAL GEOMETRY
Cotangent vector; Cotangent spaces

Cotangent space         
In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T^*_x\!
Cotangent bundle         
VECTOR BUNDLE OF ALL COTANGENT SPACES AT EVERY POINT IN A MANIFOLD
Tangent covector; Cotangent manifold
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle.
Cotangent sheaf         
GIVEN A MORPHISM OF SCHEMES 𝑋→𝑆, THE SHEAF OF 𝒪_𝑋-MODULES THAT REPRESENTS 𝑆-DERIVATIONS
Tangent sheaf; Cotangent stack
In algebraic geometry, given a morphism f: X → S of schemes, the cotangent sheaf on X is the sheaf of \mathcal{O}_X-modules \Omega_{X/S} that represents (or classifies) S-derivations in the sense: for any \mathcal{O}_X-modules F, there is an isomorphism

Wikipédia

Cotangent space

In differential geometry, the cotangent space is a vector space associated with a point x {\displaystyle x} on a smooth (or differentiable) manifold M {\displaystyle {\mathcal {M}}} ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T x M {\displaystyle T_{x}^{*}\!{\mathcal {M}}} is defined as the dual space of the tangent space at x {\displaystyle x} , T x M {\displaystyle T_{x}{\mathcal {M}}} , although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors.